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Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct ef-
fects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica,
human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on
FIB were indirect.

Many endemic and emerging zoonotic pathogens, such as
Escherichia coli strains, Salmonella enterica, Cryptosporidium

spp., Giardia spp., and zoonotic influenza viruses (15, 26, 30, 31),
can be of agricultural origin and shed in the feces of livestock (1, 2,
9). Many of these pathogens are waterborne and are, therefore,
capable of entering water bodies via storm water and agricultural
runoff as well as via subsurface transport. Testing directly for each
pathogen in feces-impacted water bodies would be prohibitively
costly and time-consuming. Consequently, regulatory standards

have relied on the quantification of fecal indicator bacteria (FIB)
for water quality assessment (27). The ability of FIB to predict
human health risks has been supported by epidemiological studies
(3, 8, 11, 33, 34).

The association between FIB levels and the risk of pathogens in
recreational waters may be impeded by agricultural practices. In
addition to fecal contamination, agricultural runoff is likely to
contribute agrochemicals (i.e., fertilizers and pesticides), which
have wide-ranging effects on ecosystems (4, 5, 7, 16, 20–22). How-
ever, the effects of agrochemicals on the fate of pathogen and FIB
populations have received little attention (7). Agrochemicals may
have adverse or beneficial effects on bacteria through direct mech-
anisms, such as through direct toxicity or by directly providing
nutrients, or through indirect mechanisms, such as by altering
predator-prey dynamics or biotic food sources. Further, FIB and
waterborne pathogens may have similar or diverging responses to
agrochemicals, potentially disconnecting the FIB-pathogen rela-
tionship.

Here, the direct effects of inorganic fertilizer, atrazine (herbi-
cide), malathion (insecticide), and chlorothalonil (fungicide) on
the concentrations of FIB (E. coli ATCC 9637 and Enterococcus
faecalis ATCC 19433), zoonotic bacterial pathogens (E. coli O157:H7
EDL 933 and S. enterica serovar Typhimurium CBD777), and vi-
ruses (human polyomavirus [HPyV] BK and adenovirus type 2
[ATCC VR-846]) were investigated. Factors that can lead to indi-
rect effects on survival, such as phytoplankton shading, competi-
tion from native bacteria, and predation by protozoa, were inten-
tionally excluded from this study because the focus was strictly on
direct effects. To isolate direct effects, two experiments, one in the
dark and one exposed to light, were conducted using simplified
microcosms that contained only autoclaved deionized water, dis-
infected sediments, and an agrochemical treatment (see the sup-
plemental material for details). The use of sterilized water and
disinfected sediment excluded algal and biofilm communities
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TABLE 1 T90 values and decay rates for all targets, averaged among all
agrochemical treatmentsa

Microcosm, target, and
matrix

Decay rate (change in concn/
no. of days)

T90 (h)bT0 to T24 T0 to T168

Dark microcosm
E. coli

Water �0.16 (1.1) 0.11 (1.7) NA
Sediment �0.51 (1) �0.07 (1.2) NA

Enterococci
Water 0.87 (0.6) 0.58 (0.9) 21
Sediment 0.02 (0.7) 0.19 (1.4) NA

E. coli O157:H7
Water �0.39 (0.8) 0.03 (1) NA
Sediment �0.61 (0.7) �0.09 (1) NA

S. enterica
Water 0.24 (1.8) 0.33 (2.3) NA
Sediment �0.19 (1) 0.09 (1.8) NA

HPyV
Water �0.12 (0.3) 0.15 (0.4) NA
Sediment �0.15 (0.2) 0.00 (0.2) NA

Adenovirus
Water �0.03 (0.2) 0.09 (0.4) NA
Sediment 0.08 (0.1) 0.01 (0.1) NA

Light microcosm
E. coli

Water �0.02 (0.4) �0.50 (0.7) NA
Sediment �0.28 (0.9) �1.59 (0.8) NA

Enterococci
Water 2.98 (1.6) 5.05 (1) 9
Sediment 0.30 (0.9) 1.34 (1.9) NA

E. coli O157:H7
Water �0.84 (1.9) �1.24 (1.7) NA
Sediment �0.91 (1.5) �1.93 (1.8) NA

S. enterica
Water �1.26 (3.4) 0.64 (5.3) NA
Sediment �1.36 (3.1) �1.00 (4) NA

a Data are presented for both matrices in both dark and light microcosms. Values in
parentheses are standard deviations.
b NA, not applicable.
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which may have resulted in indirect agrochemical effects seen pre-
viously in microcosms exposed to sunlight (24, 25).

In the first experiment, microcosms were treated with atrazine,
malathion, chlorothalonil, or inorganic fertilizer singularly at the
estimated environmental concentration (EEC; 102 �g/liter for
atrazine, 101 �g/liter for malathion, 170 �g/liter for chlorothalo-
nil, and 4,400 �g/liter N and 440 �g/liter P for fertilizer) or with
one of all the possible pairwise combinations. Solvent and water
controls were also included, resulting in 12 treatments. These
agrochemicals were chosen because, in the United States, they are
among the top two in usage for their agrochemical class (13).
Every microcosm received all six of the focal microbial taxa (4
bacteria and 2 viruses) (see the supplemental material for details).
Microcosms were covered to prevent light penetration, and the
microbes were enumerated in both the water and sediment imme-
diately before agrochemical application (T0) and 24 h (T24) and 1
week (T168) after agrochemical applications. The bacteria were
quantified using both culture-dependent methods and quantita-
tive PCR (qPCR), whereas the viruses were quantified using only
qPCR (see the supplemental methods and Table S1 in the supple-
mental material).

In the environment, agrochemicals are also subject to photo-
lytic degradation, resulting in intermediate compounds which

may impact organisms differently than parent compounds (5, 6,
32). To examine the potential effect of photolysis-derived inter-
mediates as well as parent compounds, the second experiment
used the same microcosm setup as the first experiment except that
the microcosms were exposed to natural light. There were other
minor differences from the first experiment. For instance, treat-
ments for this experiment consisted only of a singular agrochemi-
cal treatment at the EEC. Also, due to logistical constraints and the
lack of observed significant effects in the dark microcosms (see
below), viruses were excluded from this experiment and the four
inoculated bacteria were enumerated only via culturable mem-
brane filtration methods (14, 19, 28, 29). Further, previous re-
search has indicated that viruses are significantly less susceptible
to UV radiation than bacteria; therefore, it was not expected that
the virus concentrations would be significantly different in the
light microcosms (12).

Concentrations of target microbes were log transformed for all
analyses. Repeated-measures statistical analysis was used to assess
changes in bacterial concentrations over the 1-week experiment
while taking into account the nonindependence of sampling the
same microcosms over multiple time intervals. Specifically, mul-
tivariate analysis of variance (MANOVA), in which the repeated-
measures factor was the microbial concentration on each of the

FIG 1 Average concentrations for E. coli (A), E. faecalis (B), E. coli O157:H7 (C), and S. enterica (D) for all agrochemical treatments in the water column of the
dark microcosms (least-squares means � the standard error [SE]; n � 4). This figure shows data from a repeated-measures analysis.
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three sampling intervals (T0, T24, and T168), was employed. In
these analyses, interactions between among- and within-micro-
cosm (repeated-measures) factors were always included, allowing
for analysis of treatment-by-time interactions. In all MANOVAs,
the response variables were the concentrations of the six (experi-

ment 1) or four (experiment 2) microorganisms. Water and sed-
iment were sampled and analyzed separately. Culturable and
qPCR concentrations were also analyzed separately (see Table S2
in the supplemental material), but these responses were signifi-
cantly correlated in general and were consistent with previously
observed correlations (10, 17). Statistical analyses in which the
response variables were the differences between the initial concen-
tration and the T24 and T168 concentrations divided by the num-
ber of days which had passed (decay rates) (Table 1) were also
conducted. Further, T90 (the amount of time required for a bac-
terial concentration to decrease by 90%) was calculated for the
enterococci. No significant difference in T90 was observed among
treatments in either experiment; therefore, the values were aver-
aged among all agrochemical treatments. The average T90 for en-
terococci was �21 h in the water columns of the dark microcosms
and �9 h in the light microcosm experiments. No other target
microbe experienced a log decline throughout either experiment,
likely as a result of the absence of predation and competition (Ta-
ble 1).

None of the agrochemicals significantly affected microbial
concentrations at any of the time periods, regardless of whether
the response variables used were the concentrations or the decay
rates (Fig. 1 and 2 and Table 1). Furthermore, these results were
consistent across quantification methods (culture or qPCR), sam-
ple location (water or sediment), and dark or light exposure (see
Tables S3 and S4 in the supplemental material). Notably, in both

FIG 2 Average bacterial concentrations for all agrochemical treatments in the
water column of the light microcosms (least-squares means � the SE; n � 4).
This figure shows data from a repeated-measures analysis.

FIG 3 Concentrations of target microbes in the dark microcosms, averaged for all agrochemical treatments (� the standard deviation [SD]). (A) Culturable
concentrations of target bacteria in the water column. (B) Culturable concentrations of target bacteria in the sediments. (C) Concentrations of viruses in both
matrices measured by qPCR.
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dark and light microcosms, E. coli and E. coli O157:H7 exhibited
greater survival than E. faecalis and S. enterica (Fig. 3 and 4). Based
upon decay rates, the survival rates of adenovirus and HPyV ge-
netic material were so similar that the data overlay one another
precisely on the graph (Fig. 3). Viral survival more closely resem-
bled that of the E. coli strains than that of E. faecalis and S. enterica
(Fig. 3). t tests revealed significantly higher bacterial concentra-
tions (P � 0.007) in dark microcosms than in light microcosms.
As the deleterious effects of sunlight on bacterial survival have
been well documented, this result is not surprising (18, 23).

Previous experiments found no significant direct effects of
agrochemicals on FIB survival (25); however, the present experi-
ments expand on this conclusion and demonstrate that there are
no significant direct effects of agrochemicals on some bacterial
pathogens and viruses as well. Furthermore, actively replicating
bacterial cultures exposed to agrochemicals (E. coli, E. coli O157:
H7, E. faecalis, or S. enterica) (see the supplemental material)
showed no significant difference in growth rates, and thus, there
was no evidence that these agrochemicals either facilitated or
hindered the growth of these organisms (see the supplemental
methods and Table S5 in the supplemental material). In previous
research, atrazine was found to significantly affect E. coli concen-
trations in microcosms exposed to light. However, in this previous
work, pond water was used and algal and biofilm communities
were allowed to establish, while in the present work, we excluded
algal and biofilm communities. These results suggest that expo-
sure to light alone does not result in agrochemical effects on mi-
crobial survival and that the previously observed effects on E. coli
levels were more likely the result of an indirect effect of atrazine on
the phytoplankton and biofilm communities (25). While our
present study indicates that these agrochemicals have no direct
impact on the tested bacterial pathogens and viruses, a limited
suite of pathogens is included here. Furthermore, the indirect ef-
fect of agrochemicals on pathogens has not been tested thor-
oughly. Further studies are essential to understanding the impact
of agricultural practices on potential human health risks and the
relationship between FIB and the various waterborne pathogens
that can impact human health.
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